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Abstract - Diffusion Optical Tomography (DOT) is a non-invasive functional imaging modality that
aims to image the optical properties of biological organs. The forward problem of the light propagation
of DOT can be modelled as a diffusion process and is expressed as a differential diffusion equation with
boundary conditions. This model can be considered as the form of a general large scale non-linear in-
verse problem. In this paper, we formulate a solution to the DOT inverse problem as a minimisation of
some functional energy of the solution and the data. One component of this functional is a measure of
the discrepancy between the measured data and the data produced by representation of the modelled
object. Minimisation of this term alone would force the solution to be consistent with the data and the
solver used for this purpose. But in practice data is always accompanied with noise and with some jump
discontinuities, these will unavoidably yield unsatisfactory solutions, so some regularisation to restore
the solution is required. We add a diffusion regularisation potential with a statistical threshold to the
objective functional. This term aims to reduce the noise associated with the data and to preserve the
edges in the solution by a diffusion flux analysis of the local structures in the object. To accelerate the
iterative solver we introduce a particular method called the Lagged Diffusivity Newton-Krylov method.
The whole proposed strategy, which makes use of an a prior diffusion information and an specific algo-
rithm, has been developed and evaluated on simulated data.

1. DIFFUSE OPTICAL TOMOGRAPHY
Diffusion Optical Tomography (DOT) is an emerging medical imaging modality that aims to image the
optical properties of biological tissue, particularly the peripheral muscle, breast and the brain [12, 3, 18, 7].
It is non-invasive, portable and can produce images of clinically relevant parameters which cannot be
obtained by other diagnostic methods, such as blood volume and oxygenation.

The data acquisition systems for optical tomography consist of a light source as an infrared laser,
which is used to illuminate the body surface at different source locations. The light which has propagated
through the volume under investigation is measured at multiple detectors locations on the surface. The
intensity and the path-length distribution of the detected light provides information about the optical
properties of the transilluminated tissue. This boundary data measurement can be used to recover the
spatial distribution of internal absorption and scattering coefficients.

The forward problem of the light propagation of DOT can be modelled as a diffusion process [1].
Mathematically, this is expressed by the diffusion equation, which is given in the frequency domain by,
r ∈ Ω ⊂ RN (N = 2, 3): (

−∇ · κ (r)∇+ µa (r) +
iω

c

)
Φ (r, ω) = q (r, ω) (1)

with Robin-type boundary condition, m ∈ ∂Ω:

Φ (m,ω) + 2κ(m)A
∂Φ(m,ω)

∂n
= 0 (2)

where ω is the frequency parameter, Φ is the photon density, c is the velocity of light, q is an isotropic
source of light in the medium, A is a boundary term which incorporates the refractive index mismatch
at the tissue-air boundary, n is the outward normal at ∂Ω, κ and µa are the diffusion and absorption
coefficients, respectively.

We define here:
κ =

1
3 (µa + µs)

(3)

where µs is the reduced coefficient.
The measurable quantity is given by the boundary exitance:

Γ (m,ω) = −κ(m)
∂Φ (m,ω)

∂n
(4)
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By using the boundary condition (2), we have:

Γ =
1

2A
Φ (5)

The data acquisition provides the exitance Γ and expressed in a complex polar form |Γ| ei arg Γ, where
arg Γ is the phase shift and |Γ| is the modulation amplitude. The measurement appropriate for the re-
construction is given by the logarithm of the polar form of the exitance.

2. INVERSE PROBLEM AND REGULARISATION
The forward problem can be stated as:
Given a distribution of light sources q on the boundary ∂Ω of a domain Ω, and a distribution of tissue
optical parameters x = (µa, µs) within Ω, find the resulting measurement set y on ∂Ω.
and the inverse problem:
Given a distribution of light sources q on the boundary ∂Ω and data y on ∂Ω, find x = (µa, µs) in Ω.

Consider S source positions qj (j = 1, ..., S) at the boundary ∂Ω and Mj measurement positions
mi(j) ∈ ∂Ω, (i = 1, ..., Mj) for the jth source qj , resulting in a total number of measurements MTOT =∑S

j=1 Mj . Then, the forward problem can be expressed by the form of a nonlinear operator and is
presented by:

F (x) = y (6)

where the nonlinear forward operator F : H1(Ω)×H1(Ω) → H− 1
2 (∂Ω) maps a distribution of the object

x = (µa, µs) ∈ H1(Ω)×H1(Ω) into a data image y ∈ H− 1
2 (∂Ω).

The measurement set y is given by:

y =
[
(arg Γ, log (|Γ|))i(j)

]
1≤i≤Mj

1≤j≤S

(7)

where the tuple yi(j) = (arg Γ, |Γ|)i(j) represents the measurement data collected at the boundary site
mi(j) ∈ ∂Ω associated to the source distributions qj .

The inverse problem consists in finding an estimate for the object x which is mapped by the operator
F to a perfect data ȳ. The measured data y approximates the perfect data ȳ with:

‖y − ȳ‖ ≤ δ, where δ > 0. (8)

To solve the inverse problem (6), we had to check some assumptions in the forward operator F . By
Hadamard definition [10], the problem (6) is well-posed if F is a homeomorphism between the complete
metric spaces H1(Ω)×H1(Ω) and H− 1

2 (∂Ω), i.e. the solution of (6) is unique (F is injective), for every
y ∈ RM there exists a solution (F is surjective) and the solution of (6) depends continuously on the data y
(F is continuously invertible). The problem is ill-posed if it is not well-posed. A mathematically well-posed
problem may be ill-posed in practice, the injectivity, subjectivity and stability can not be ensured after
the postprocessing stage. The approximation of the forward model, sampling the data, discretisation and
other fluctuations may misrepresent the aspect of the problem. The data y may not belong to the range(F )
(F is not surjective) or/and more than one vector in the subspace F−1({y}) may be solutions of the
problem (F is not injective). Hence, it seems natural to replace the data y by its projections onto range(F )
to reassure the subjectivity. Moreover, we can select a meaningful solution in the subset F−1({y}) by
introducing a prior information which involves the choice of some inference principle as smoothness of the
solution or other restoration criteria to reduce the subset F−1({y}) (injectivity condition) and regularize
the inverse problem. Furthermore, the solution may be very sensitive to small perturbations of the data
(or measures). A small perturbation δy may give rise to large perturbations δx = F−1(δy), which may
have dramatic consequences on the interpretation of the solution. In this case as well, the constraints
need to be relaxed. The combination of these strategies for solving the problem (6) leads to recover a
solution that optimize a prior function Ψ(x) over the subspace F−1({ỹ}), where ỹ is the projection of y
onto the range of F . This can be expressed by:

(P)
{

Minimize Ψ(x)
subject to : x ∈ F−1({ỹ}) (9)

A standard and equivalent strategy of the problem (9) is to reformulate it to a minimisation system:

(P)

{
x̃ = arg min

x
Ψ(x) regularity term

x̃ = arg min
x

D(y, F (x)) fidelity term (10)
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where D is a distance between F (x) and y. The fidelity or fit term (D(y, F (x))) can be regarded as a
tolerant expression of the inverse problem. We can replace this distance by some other attracting function
y to F (x).

A example of a prior function Ψ(x) also called regularity term and a distance D can be chosen as:

• Ψ(x) = ‖x‖22, minimum norm or Ψ(x) =
∫

x ln x, maximum entropy.

• D(F (x), y) = ‖y − F (x)‖p
p, Lp, 1 ≤ p < ∞ distance.

This strategy leads us to the minimisation problem formulated as follow:

(P) Minimize E(x) := D(y, F (x)) + τΨ(x) (11)

where τ > 0 is a regularisation parameter to be prescribed.
Figure 1 summarizes the common strategy discussed above and used for many inverse problem appli-

cations.

y

ỹ

y + δy

ỹ + δỹ

F

range (F )

F−1 ({ỹ})

x̃ + δx̃

x̃

x+ + δx+

x+
Entropy

solution

Minimum norm

solution

H1(Ω) × H1(Ω) H−1

2(∂Ω)

Figure 1: Summary of the strategy adopted for inverse problem.

In this paper, we will study precisely the influence of the regularity term such that the problem has
a unique and stable solution, that is physically relevant and computable. We consider that:

Ψ(x) =
∫

ψ(|∇x|) (12)

where ψ(|∇x|) is scalar function whose Gradient ψ′(|∇x|) is the flux function and ψ′(|∇x|)
|∇x| is the

diffusion function.
Under the usual assumptions of a system corrupted by multivariate Gaussian additive noise and

according to the maximum likelihood principle, a solution of the DOT inverse problem can be given by
minimising the following objective function over the domain H1(Ω)×H1(Ω) of the object x = (µa, µs):

(P) Minimize E(x) :=
1
2
‖y − F (x)‖R + τ

∫

Ω

ψ(|∇x|) (13)

where x is the original object to be recovered, R is the data-space correlation matrix and ‖.‖R is the
data-space norm.

The behaviour of the function ψ, influence the local direction of the regularisation. A specific estima-
tion of this function in the minimisation problem is crucial. In this work we will suggest a methodology
for choosing an adequate function ψ that could be used in a large scale nonlinear inverse problem, par-
ticulary in DOT.

Hypothesis 1. Assume that ψ verifies the following hypothesis:

1. ψ is twice continuously differentiable.

2. ψ(0) = 0.

3. ψ(s) is increasing function for all s ≥ 0.
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4. ψ(s) is convex for all s ≥ 0.

5. ψ(
√

s) is concave for all s ≥ 0.

We denote by:

E(x) = ELS(x) + τEReg(x) (14)

ELS(x) =
1
2
‖y − F (x)‖R (15)

EReg(x) =
∫

Ω

ψ(|∇x|) (16)

The solution is given by:
xsolution = arg min

x
{E(x)} (17)

3. THE LAGGED DIFFUSIVITY NEWTON-KRYLOV SOLVER
Let x be an estimate for the minimizer of E and assume that E(x) is twice Fréchet differentiable at
x. Newton’s method consists of expanding the functional E(x) in the second order at x, the quadratic
approximation to E(x + h) is:

Q(h) = E(x) + E′(x) · h +
1
2
(E′′(x) · h) · h (18)

E′(x) and E′′(x) denote respectively the Gradient and the Hessian of the functional E(x).
Consider that E′′(x) is positive definite, then Q(h) has a unique minimizer which satisfies:

E′(x) + E′′(x) · h = 0 (19)

If we replace the estimation x by xk and x + h by xk+1 := xk + hk as the new estimate for the
minimizer E, where hk is a solution of the linear system E′(xk) + E′′(xk) ·hk = 0, we obtain the Newton
iteration:

xk+1 = xk − [E′′(xk)]−1E′(xk) (20)

The are two strategies to improve the convergence of the Newton method: the line search approach
called Damped-Newton algorithm and the trust region called Levenberg-Marquardt algorithm approach
[16]. In this work, we will use the Levenberg-Marquardt method. Moreover, to avoid the explicit formation
of the whole Hessian and the problem of lack of memory due to the large-scale of the DOT, we will use
the generalised minimal residual method (GMRES) in Krylov subspace for the linear stage [20, 9], which
evaluates and stores sequentially only the result of matrix-vector operation. The algorithm is as follow:

∥∥∥∥∥∥∥∥∥∥∥∥

1) initialisation
x0 = initial guess

2) iterations: for k = 0, 1, 2, ... do
Ek = E(xk), gk = E′(xk), Hk = E′′(xk), Qk(h) = Ek + gk · h + 1

2 (Hk · h) · h
sk = H−1

k gk (Krylov/GMRES methods)
xk+1 = xk − sk

(21)

To calculate the Gradient of the objective function, we simply compute its Fréchet derivative. We
have then that the Gradient of E(x) is as follows:

gradE(x) = J T (x)R(F (x)− y) + τL(x)x (22)

where:

J T (x)h = F ′(x)T h

L(x)h = −∇ ·
(

ψ′ (|∇x|)
|∇x| ∇x

)
(23)

To deal with the non-differentiability of the absolute value |∇x| at t=0, many researchers replace
|∇x| by other approximation functions such as |∇x| =

√
|∇x|2 + ε, ε > 0. In this work, we will choose

D04
4



a quadratic approximation of ψ at 0 to avoid this problem. We will explain in detail this approximation
in the next paragraph.

For the Hessian, we compute the second Fréchet derivative of the functional E(x). We find that the
Hessian of E(x) is given by:

HessE(x) =
[
J T (x)RJ (x) + (F (x)− y)T H (x)R

]
+ τ [L (x) + L′ (x)x]

where:

H (x)H = F ′′ (x)H

L′ (x)x · h = −∇ ·
((

ψ′′ (|∇x|)− ψ′ (|∇x|)
|∇x|

) ∇x⊗∇x

|∇x|2 ∇h

)

where ⊗ denotes the Kronecker product.
Given the size of the data, an explicit discretisation of the whole Hessian may exceed the allocated

memory. One possible solution is to ignore the useless terms and reformulate this huge Hessian by a
smallest and nearest approximation.

On the one hand H(x)R is bounded:

(F (x)− y)T H (x) R ≤ const ‖y − F (x)‖ (24)

That means when ‖y − F (x)‖ 7→ 0 implies that (y − F (x))T H (x)R is very small. Then, the terms
of with H(x)R can be ignored in line search or trust region procedure of Newton method. Hence, the term
(F (x) − y)TH(x)R can be omitted in the Hessian term. Note that for Levenberg-Marquardt algorithm
we add a relaxation term γI, where γ is a positive parameter that will be adjusted at each iteration in
respect of the algorithm (21) [6, 15]. The approximated Hessian of the least squares functional becomes:

HessELS(x) = J T (x)RJ (x) (25)

On the other hand, we have :

E′′
Reg (x) (h, h) =

ψ′ (|∇x|)
|∇x|

(
|∇h|2 − (∇x · ∇h)2

|∇x|2
)

︸ ︷︷ ︸
≥0By Cauchy-Schwartz

+ψ′′ (|∇x|) (∇x · ∇h)2

|∇x|2 ≥ 0 (26)

Under the Hypothesis 1 on ψ and if J T RJ is positive definite, it is quite easy to prove the global
convergence of E(x), so no trust region strategy is necessary.

However, we have:

L′ (x) (h, h) =
(

ψ′′ (|∇x|)− ψ′ (|∇x|)
|∇x|

)

︸ ︷︷ ︸
≤0By Concavity of ψ(√s) on s

(∇x · ∇h)2

|∇x|2 (27)

So, by dropping the negative semidefinite operator L′(x) from the Hessian, the Levenberg-Marquardt
method still converges to a unique solution. This approximation can be inspired from Gauss-Newton
approximation of the Hessian neglecting the term L′(x) [24].

The actual approximated Hessian becomes:

HessEReg (x) = ∇ ·
(

ψ′ (|∇x|)
|∇x| ∇

)
= L (x) (28)

This method is often called the Lagged Diffusivity approach, as the Gradient and the Hessian in
Newton algorithm are calculated from the diffusion operator L(x).

We conclude that the approximated Hessian becomes:

HessE(x) = J T (x)RJ (x) + τL (x) (29)
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Figure 2: Geometrical interpretation: Left graph is the 2D case and the right graph is the 3D case.

4. ISOTROPIC AND ANISOTROPIC REGULARISATION
Weickert [25] makes an interesting analogy between the physical background of diffusion and its appli-

cation in image processing. Indeed this inference allows a good understanding of the diffusion process.
In physics, the diffusion is a process of equilibration of concentration differences with mass conservation.
The isotropic diffusion is a property that preserves its value when measured in different directions. The
anisotropic diffusion is a property that has a different value when measured in different directions.

In image processing the concentration could be described by the grey value or the colour index of the
image. The diffusion process can be characterized by the behaviour of ψ with respect to the local image
structure x. The diffusion function can be adapted to the local image structure. If the diffusion function
is constant over the whole image domain, the process is called isotropic or homogeneous diffusion, and if
the diffusion function is adapted to the local image structure, we have an anisotropic or nonhomogeneous
diffusion process. The anisotropic diffusion model in image processing was introduced by Perona and
Malik [17] by using a diffusion function dependent upon the norm of the gradient of the image. In the
same context, Cottet and Germain [5] propose another alternative by choosing the diffusion function
as a tensor-matrix. A drawback of the structure of the anisotropic diffusion matrix is the increasing of
calculation time which discourage its utilisation for the large-scale inverse problems.

To investigate the behaviour of diffusivity, we decompose the Gradient of the regularity term∇.
(

ψ′(|∇x|)
|∇x| ∇x

)

by using the local object structures, that is, the tangent and the normal directions to the isosurface
(isophote lines in 2D). We denote by N = ∇x

|∇x| where |∇x| 6= 0 is the unit vector in the direction of the
Gradient of the object and T = N⊥ the hyperplane tangent to the local isosurface. This decomposition
can be expressed on the basis of eigenvectors as follows [22]:

Proposition 1.

∇.

(
ψ′ (|∇x|)
|∇x| ∇x

)
3D= ψ′ (|∇x|)

|∇x| (xT2T2 + xT1T1) + ψ′′ (|∇x|)xNN

∇.

(
ψ′ (|∇x|)
|∇x| ∇x

)
2D= ψ′ (|∇x|)

|∇x| xTT + ψ′′ (|∇x|)xNN (30)

where (N, T1, T2) (resp (N,T )) is an orthogonal basis in R3 (resp R2) (see Figure 2).

(N, T1, T2) are the eigenvectors of PHP with P = I − NNT and H = Hess(x). For the 2D case,
xNN and xTT are the second derivatives of x in the T -direction and N -direction, respectively. And(

n∑
i=1

− |∇x|κi

)
= ∆x− xNN . This proposition allows us to understand the action of the regularisation

divergence operator in the directions N and T = N⊥. That allow us to interpret the diffusion process
along the flow line of the associated eigenvector fields.

In the case of isotropic diffusion regularisation, that is Tikhonov’s regularisation [23], we have:

Ψ (|∇x|) =
∫

1
2
|∇x|2 (31)

The Gradient of this regularity term is:

∇ ·
(

ψ′ (|∇x|)
|∇x| ∇x

)
= xNN + xT1T1 + xT2T2 (32)
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The isotropic diffusion (Tikhonov) regularisation acts in all directions. Consequently, the smoothing
process does not only reduce the noise, but also blurs important structure features such as the edges
and contours, thus making them hard to identify. Furthermore, isotropic diffusion regularisation could
dislocate structure information when mapping from finer to coarser grids, that is the case in inverse
problem solvers which use multigrid methods or mapping from finer mesh to a regular coarse grid.

While the isotropic diffusion (Tikhonov) regularisation does not preserve structures, we need to find
a new function ψ that verifies the convergence hypothesis (Hypothesis 1) and allows an efficient noise
reduction, taking fully into account the restoration and enhancement of the local structures information
present in the object. A good diffusion regularisation consists in the following conditions:

1. The Hypothesis 1 is fulfilled.

2. The regularisation must be isotropic in homogeneous regions, that is when |∇x| is small (low
gradients).

3. In the vicinity of an edge, the object presents a strong gradient. In order to preserve this edge the
diffusion must act in the direction of N⊥ and not across it.

The choice of a function satisfying these conditions is based on the directional interpretation, see eqn.
(30). These conditions are expressed by the following relations:

1. ψ ∈ C2(R), ψ(0) = 0, ψ′(s) ≥ 0, ψ′′(s) ≥ 0, (ψ(
√

s))′′ ≤ 0 for all s ≥ 0.

2. ψ′ (0) = 0, lim
s→0+

ψ′(s)
s = lim

s→0+
ψ′′ (s) = ψ′′ (0) > 0

3. lim
s→+∞

ψ′′ (s) = 0, 0 < lim
s→+∞

ψ′(s)
s = β < ∞

Unfortunately, the conditions 2 and 3 are incompatible. One possible solution is to use a composite
of two functions, the first one isotropic such as Tikhonov functional and the second one an anisotropic
functional such as the total variation functional [19]. An alternative choice is also possible and leads
to almost the same result, if we choose Perona-Malik functional [17], Green functional [8], or Tukey’s
biweight functional [4].
Given that must we decide between flat or edges regions, we can use a statistical threshold in the gradient
of the object to make the right decision.

In this work, we will suggest and use this function:

ψσ (|∇x|) =

{ |∇x|2
2 if |∇x| ≤ σ
σ

ψ′(σ) (ψ (|∇x|)− ψ (σ)) + σ2

2 otherwise
(33)

σ is a scale that we adjust in each iteration of the Lagged Diffusivity Newton-Krylov solver. Note here
that the choice of σ depends on our hypothesis that we have assumed on ψ as well. An automatic choice
of this parameter can be based on the cumulated histogram [17]or on the local geometry [14] of the object
at each iteration.
The Gradient of this regularity term is expressed by:

∇ ·
(

ψ′ (|∇x|)
|∇x| ∇x

)
=

{
xNN + xT1T1 + xT2T2 if |∇x| ≤ σ

σ
|∇x| (xT1T1 + xT2T2) otherwise

(34)

For the choice of σ we will use the robust statistic estimator [13], the diffusion can be seen as a robust
estimation procedure that estimates a piecewise smooth object from noisy input data. The diffusion
function that ensures the isotropy or anisotropic criterion is closely related to the error norm of ψ and
the influence function is proportional to the derivative ψ′ in the robust statistic analysis.

5. EXPERIMENTS AND RESULTS
We present in this section some results on the comparison of the isotropic diffusion regularisation. The

isotropic (Tikhonov) regularisation method and the proposed (adapted diffusion) regularisation method,
are tested and compared in simulated 2D and 3D objects. In order to show the advantage of the proposed
method compared to the conventional Tikhonov one,particularly, the edges and structures information
preserving and enhancement, we consider two 2D phantom objects: a straight edges phantom and a
curves phantom with diameter of 70mm. Each phantom have a scattering and absorption coefficients
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Forward mesh Backward mesh Schematic diagrams Optical properties
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Figure 3: The 2D phantoms: The top row is the straight edges phantom and the bottom row is the curves
phantom.

distributions µa and µs varying relative to each region. 32 sources are placed at equidistance spacing
along the surface, and 32 detectors is located between two source sites.The measurements in detectors are
acquired from each source except the two closest ones, leading to a total of 960 measurements. We assume
that sources to be amplitude-modulated with a frequency of 50MHz, and each measurement consists of
the log of the modulation amplitude and the phase shift [2, 21]. The data y are computed with the finite
element method (FEM) of the diffusion forward model using an adapted triangle mesh consisting of 1339
nodes for the straight edges phantom and 2572 for the curves phantom. For the reconstruction we assume
no a priori knowledge about the true coefficient distributions and we use homogeneous (constant) values
for the initial guess. Starting from this estimate, we perform the reconstruction in a regular grid of 70×70
pixel. The FEM backward basis consist of a regular triangle mesh of 1485 nodes for edges phantom and
3065 nodes for the curves phantom, using linear shape function (P1 approximation). All the data for this
2D simulations was blurred with 1% Gaussian noise and we use the regularisation parameter τ = 10−5

according to the L-curve method [11]. Figure 3 illustrates the two phantom and their optical properties.
The reconstructions was performed in respect of our proposed methodology detailed previously in this
paper.

Figure 4 shows the reconstructions of the two phantoms with Tikhonov regularisation and the
proposed regularisation method. To show the robustness of the proposed method for preserving the
structures information we show up the profile lines at different locations. These profiles clearly show the
advantage of the proposed regularisation method and prove the inability of the conventional isotropic
(Tikhonov) diffusion method. Moreover, the Tikhonov method can change the shape of objects as showed
in Figure 4 for the reconstruction of the s of the curved phantoms. To appraise the robustness of the
reconstructions of the proposed method reconstruction we compared their H1-error (‖x− xrec‖1H) with
the Tikhonov one. The Table 1 shows the improvement of the new proposed method compared to the
Tikhonov method.

Tikhonov method Proposed method
Edges phantom 0.27 0.17
Curved phantom 0.96 0.84

Table 1: H1-error of Tikhonov method and the proposed method.

6. CONCLUSIONS
Visual inspection confirms the hight quality of the anisotropic diffusion regularisation of the inverse
problem for DOT. Moreover, anisotropic diffusion regularisation reduces the noise and recovers the edges
and structures information present in the object. This improvement in the reconstruction of the optical
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Figure 4: The 2D reconstructions and their profiles. For the edges phantom we have the profiles at y =
0 for a and s and for the curved phantom we have the profile at line y = 14 for µa and at line y = -12 for
µs.

properties with DOT could open a new research development for qualitative and quantitative studies
and could gives accurate reconstructed absorption and scattering coefficients that contribute to a better
diagnosis in medical optical tomography.
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